Morphological granulometric estimation of random patterns in the context of parameterized random sets

نویسندگان

  • Sinan Batman
  • Edward R. Dougherty
چکیده

Morphological features are used to estimate the state of a random pattern (set) governed by a multivariate probability distribution. The feature vector is composed of granulometric moments and pattern estimation involves feature-based estimation of the parameter vector governing the random set. Under such circumstances, the joint density of the features and parameters is a generalized function concentrated on a solution manifold and estimation is determined by the conditional density of the parameters given an observed feature vector. The paper explains the manner in which the joint probability mass of the parameters and features is distributed and the way the conditional densities give rise to optimal estimators according to the distribution of probability mass, whether constrained or not to the solution manifold. The estimation theory is applied using analytic representation of linear granulometric moments. The e!ects of random perturbations in the shape-parameter vector is discussed, and the theory is applied to random sets composed of disjoint random shapes. The generalized density framework provides a proper mathematical context for pattern estimation and gives insight, via the distribution of mass on solution manifolds, to the manner in which morphological probes discriminate random sets relative to their distributions, and the manner in which the use of additional probes can be bene"cial for better estimation. 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal linear granulometric estimation for random sets

This paper addresses two pattern-recognition problems in the context of random sets. For the .rst, the random set law is known and the task is to estimate the observed pattern from a feature set calculated from the observation. For the second, the law is unknown and we wish to estimate the parameters of the law. Estimation is accomplished by an optimal linear system whose inputs are features ba...

متن کامل

Granulometric parametric estimation for the random Boolean model using optimal linear filters and optimal structuring elements

Morphological granulometries have been used successfully to discriminate textures in the context of classical featurebased classification, and more recently they have been used as observation variables for estimators in the context of random sets. This paper considers optimal linear parametric estimation of the law of a random set. It is set in a Bayesian framework in that estimation is of the ...

متن کامل

Non-homothetic granulometric mixing theory with application to blood cell counting

A granulometry is a family of morphological openings by scaled structuring elements. As the scale increases, increasing image area is removed. Normalizing removed area by the total area yields the pattern spectrum of the image. The pattern spectrum is a probability distribution function and its moments are known as granulometric moments. Modeling the image as a random set, the pattern spectrum ...

متن کامل

Monte Carlo Estimation of Morphological Granulometric Discrete Size Distributions

Morphological granulometries are frequently used as descriptors of granularity, or texture, within a binary image. In this paper, we study the problem of estimating the (discrete) size distribution and size density of a random binary image by means of empirical, as well as, Monte Carlo estimators. Theoretical and experimental results demonstrate superiority of the Monte Carlo estimation approac...

متن کامل

کاربرد الگوریتم‌های داده‌کاوی در تفکیک منابع رسوبی حوزۀ آبخیز نوده گناباد

Introduction: Reduction of sediment supply requires the implementation of soil conservation and sediment control programs in the form of watershed management plans. Sediment control programs require identifying the relative importance of sediment sources, their quantitative ascription and identification of critical areas within the watersheds. The sediment source ascription is involves two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2001